Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node
نویسندگان
چکیده
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core "context aware" and multi-core "power-off/wakeup" energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.
منابع مشابه
Energy optimization based on routing protocols in wireless sensor network
Considering the great significant role that routing protocols play in transfer rate and choosing the optimum path for exchange of data packages, and further in the amount of consumed energy in the routing protocol, the present study has focused on developing an efficient compound energy algorithm based on cluster structure which is called active node with cluster structure. The purpose of this ...
متن کاملEnergy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control
A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملLEBRP - A Lightweight and Energy Balancing Routing Protocol for Energy-Constrained Wireless Ad Hoc Networks
A wireless ad hoc network typically refers to any set of wireless networks where all devices have equal status on a network and are free to associate with any other wireless ad hoc network devices in their range. As the nature of these networks, they commonly do not have external power supplies, and each node has a limited internal power source. In this paper, we put forward a new routing proto...
متن کاملHYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks
In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2014